El personaje

PERSONAJES EN LA HISTORIA DE LAS MATEMÁTICAS

Pitágoras
 http://www.profesorenlinea.cl/imagenbiografias/pitagoras3.jpg(isla de Samos, actual Grecia, h. 572 a.C.-Metaponto, hoy desaparecida, actual Italia, h. 497 a.C.) Filósofo y matemático griego. Se tienen pocas noticias de la biografía de Pitágoras que puedan considerarse fidedignas, ya que su condición de fundador de una secta religiosa propició la temprana aparición de una tradición legendaria en torno a su persona.Parece seguro que Pitágoras fue hijo de Mnesarco y que la primera parte de su vida la pasó en Samos, la isla que probablemente abandonó unos años antes de la ejecución de su tirano Polícrates, en el 522 a.C. Es posible que viajara entonces a Mileto, para visitar luego Fenicia y Egipto; en este último país, cuna del conocimiento esotérico, se le atribuye haber estudiado los misterios, así como geometría y astronomía. Algunas fuentes dicen que Pitágoras marchó después a Babilonia con Cambises, para aprender allí los conocimientos aritméticos y musicales de los sacerdotes. Se habla también de viajes a Delos, Creta y Grecia antes de establecer, por fin, su famosa escuela en Crotona, donde gozó de considerable popularidad y poder. La comunidad liderada por Pitágoras acabó, plausiblemente, por convertirse en una fuerza política aristocratizante que despertó la hostilidad del partido demócrata, de lo que derivó una revuelta que obligó a Pitágoras a pasar los últimos años de su vida en Metaponto. La comunidad pitagórica estuvo seguramente rodeada de misterio; parece que los discípulos debían esperar varios años antes de ser presentados al maestro y guardar siempre estricto secreto acerca de las enseñanzas recibidas. Las mujeres podían formar parte de la cofradía; la más famosa de sus adheridas fue Teano, esposa quizá del propio Pitágoras y madre de una hija y de dos hijos del filósofo. El pitagorismo fue un estilo de vida, inspirado en un ideal ascético y basado en la comunidad de bienes, cuyo principal objetivo era la purificación ritual (catarsis) de sus miembros a través del cultivo de un saber en el que la música y las matemáticas desempeñaban un papel importante. El camino de ese saber era la filosofía, término que, según la tradición, Pitágoras fue el primero en emplear en su sentido literal de «amor a la sabiduría». También se atribuye a Pitágoras haber transformado las matemáticas en una enseñanza liberal mediante la formulación abstracta de sus resultados, con independencia del contexto material en que ya eran conocidos algunos de ellos; éste es, en especial, el caso del famoso teorema que lleva su nombre y que establece la relación entre los lados de un triángulo rectángulo, una relación de cuyo uso práctico existen testimonios procedentes de otras civilizaciones anteriores a la griega.

Eratóstenes 
http://k38.kn3.net/A45EF9C78.jpg(Cirene, c. 284 a.J.C. - Alejandría, c. 192 a.J.C.) Astrónomo, geógrafo, matemático y filósofo griego, una de las figuras más eminentes del gran siglo de la ciencia griega: el de Euclides, Arquímedes y Apolonio. Once años menor que Arquímedes, mantuvo con éste relaciones de amistad y correspondencia científica. Cultivó no sólo las ciencias, sino también la poesía, la filología y la filosofía, por lo que fue llamado por sus coetáneos "pentatleta", o sea campeón de muchas especialidades.
Vivió en Atenas hasta que fue llamado a Alejandría (245 a.J.C.) para educar a los hijos de Tolomeo III y para dirigir la biblioteca de la ciudad. Fue célebre en matemáticas por la criba que lleva su nombre, utilizada para hallar los números primos, y por su mesolabio, instrumento de cálculo usado para resolver la media proporcional. Consideró tan importante la invención del mesolabio que regaló un ejemplar de él a un templo como ofrenda votiva, con un texto en verso que explicaba su utilidad. Pero Eratóstenes es particularmente recordado por haber establecido por primera vez la longitud de la circunferencia de la Tierra (252.000 estadios, equivalentes a 40.000 kilómetros) con un error de sólo 90 kilómetros respecto a las estimaciones actuales. Eratóstenes sabía que, cuando en la ciudad egipcia de Siene (actual Asuán), el Sol llegaba su punto más alto (mediodía), se encontraba en la vertical del observador. Y observó que en Alejandría, ciudad situada a mayor latitud, el Sol formaba un ángulo de aproximadamente 70º con la vertical cuando se encontraba en su punto más alto. Valiéndose de la distancia existente entre Siene y Alejandría, estimó que la circunferencia de la Tierra superaba en 70 veces tal longitud y dedujo fácilmente su medida mediante una cualificada ecuación. También calculó la oblicuidad de la eclíptica por medio de la observación de las diferencias existentes entre las altitudes del Sol durante los solsticios de verano e invierno, y además elaboró el primer mapa del mundo basado en meridianos de longitud y paralelos de latitud. Al final de su vida se quedó ciego, lo que le llevó al suicidio ante la imposibilidad de proseguir con sus lecturas.


Newton 
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjf2Ce0PK8scbJj01P21FPXdh5SyC5GRMFi5yKiHYBmBf6rDvhlLJ0-payzU6dXpwgUebsHzA4qv19X3KG84XEfvFZXaRv4i-57hB8pkl967YceXaMBCbDHjY-hXVpKeUIZagSGc2zOtEs/s740/newton21.jpgCientífico inglés (Woolsthorpe, Lincolnshire, 1642 - Londres, 1727). Hijo póstumo y prematuro, su madre preparó para él un destino de granjero; pero finalmente se convenció del talento del muchacho y le envió a la Universidad de Cambridge, en donde hubo de trabajar para pagarse los estudios. Allí Newton no destacó especialmente, pero asimiló los conocimientos y principios científicos de mediados del siglo XVII, con las innovaciones introducidas por Galileo, Bacon, Descartes, Kepler y otros. Tras su graduación en 1665, Isaac Newton se orientó hacia la investigación en Física y Matemáticas, con tal acierto que a los 29 años ya había formulado teorías que señalarían el camino de la ciencia moderna hasta el siglo XX; por entonces ya había obtenido una cátedra en su universidad (1669). Suele considerarse a Isaac Newton uno de los protagonistas principales de la llamada «Revolución científica» del siglo XVII y, en cualquier caso, el padre de la mecánica moderna. No obstante, siempre fue remiso a dar publicidad a sus descubrimientos, razón por la que muchos de ellos se conocieron con años de retraso. Newton coincidió con Leibniz en el descubrimiento del cálculo integral, que contribuiría a una profunda renovación de las Matemáticas; también formuló el teorema del binomio (binomio de Newton). Pero sus aportaciones esenciales se produjeron en el terreno de la Física. Sus primeras investigaciones giraron en torno a la óptica: explicando la composición de la luz blanca como mezcla de los colores del arco iris, Isaac Newton formuló una teoría sobre la naturaleza corpuscular de la luz y diseñó en 1668 el primer telescopio de reflector, del tipo de los que se usan actualmente en la mayoría de los observatorios astronómicos; más tarde recogió su visión de esta materia en la obra Óptica (1703). También trabajó en otras áreas, como la termodinámica y la acústica; pero su lugar en la historia de la ciencia se lo debe sobre todo a su refundación de la mecánica. En su obra más importante, Principios matemáticos de la filosofía natural (1687), formuló rigurosamente las tres leyes fundamentales del movimiento: la primera ley de Newton o ley de la inercia, según la cual todo cuerpo permanece en reposo o en movimiento rectilíneo uniforme si no actúa sobre él ninguna fuerza; la segunda o principio fundamental de la dinámica, según el cual la aceleración que experimenta un cuerpo es igual a la fuerza ejercida sobre él dividida por su masa; y la tercera, que explica que por cada fuerza o acción ejercida sobre un cuerpo existe una reacción igual de sentido contrario.

Ruffini
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg9wNpTiCdaWsCUc20zm4wvyi8hjgkctkwaBnY6gqP1TdCsppoLswU6tCEmeuybLA-bAgvdZ9yG7Gd0FoQrHbHldJDg1XCM7Rgt2tAZgBGf5cAwwrygcRTnLOJhPmTVw0yZ5PuTABprAG0/s400/20070926klpmatalg_6_Ies_SCO.jpg (Valentano, 1765 - Módena, 1822) Matemático y médico italiano. Nacido en Valentano, ciudad que pertenecía entonces a los Estados Pontificios, cursó estudios de medicina en la Universidad de Módena, pero una vez finalizados se dedicó casi por entero a la investigación matemática.  Desde 1787 ejerció la docencia como profesor de matemáticas en la Universidad de Módena. Ganó la cátedra de análisis de la escuela militar de esta ciudad, que hubo de abandonar en 1798 al ser expulsado por negarse a pronunciar el juramento de fidelidad a la República Cisalpina creada por Napoleón Bonaparte. Fue restituido en su puesto por las tropas austriacas un año más tarde. Tras recuperar sus dominios, el duque de Módena le nombró rector de la Universidad de Módena (1814), en la que ocupó las cátedras de clínica médica, medicina práctica y matemáticas aplicadas. Paolo Ruffini es conocido como el descubridor del llamado método de Ruffini que permite hallar los coeficientes del polinomio que resulta de la división de un polinomio cualquiera por el binomio x-a. Sin embargo, no fue ésta su mayor contribución al desarrollo de la matemática. Hacia 1805 elaboró una demostración de la imposibilidad de la solución general de las ecuaciones algebraicas de grados quinto y superiores, aunque cometió ciertas inexactitudes que serían corregidas por el matemático noruego Niels Henrik Abel. Resultado del trabajo de ambos matemáticos es el llamado teorema de Abel-Ruffini, que demuestra definitivamente esa imposibilidad. También elaboró un pequeño tratado en el que anticipó la teoría de grupos que sería desarrollada por Galois y Cauchy, y estudió el tifus durante la epidemia de 1817. Entre sus obras destaca su Teoría general de las ecuaciones (1798).


Tales de Mileto
 http://img.webme.com/pic/d/ditbutec/tales.jpg(Mileto, actual Turquía, 624 a.C.-?, 548 a.C.) Filosófo y matemático griego. En su juventud viajó a Egipto, donde aprendió geometría de los sacerdotes de Menfis, y astronomía, que posteriormente enseñaría con el nombre de astrosofía. Dirigió en Mileto una escuela de náutica, construyó un canal para desviar las aguas del Halis y dio acertados consejos políticos. Fue maestro de Pitágoras y Anaxímenes, y contemporáneo de Anaximandro.Fue el primer filósofo griego que intentó dar una explicación física del Universo, que para él era un espacio racional pese a su aparente desorden. Sin embargo, no buscó un Creador en dicha racionalidad, pues para él todo nacía del agua, la cual era el elemento básico del que estaban hechas todas las cosas, pues se constituye en vapor, que es aire, nubes y éter; del agua se forman los cuerpos sólidos al condensarse, y la Tierra flota en ella. Tales se planteó la siguiente cuestión: si una sustancia puede transformarse en otra, como un trozo de mineral azulado lo hace en cobre rojo, ¿cuál es la naturaleza de la sustancia, piedra, cobre, ambas? ¿Cualquier sustancia puede transformarse en otra de forma que finalmente todas las sustancias sean aspectos diversos de una misma materia? Tales consideraba que esta última cuestión sería afirmativa, puesto que de ser así podría introducirse en el Universo un orden básico; quedaba determinar cuál era entonces esa materia o elemento básico. Finalmente pensó que era el agua, pues es la que se encuentra en mayor cantidad, rodea la Tierra, impregna la atmósfera en forma de vapor, corre a través de los continentes y la vida no es posible sin ella. La Tierra, para él, era un disco plano cubierto por la semiesfera celeste flotando en un océano infinito. Esta tesis sobre la existencia de un elemento del cual estaban formadas todas las sustancias cobró gran aceptación entre filósofos posteriores, a pesar de que no todos ellos aceptaron que el agua fuera tal elemento. Lo importante de su tesis es la consideración de que todo ser proviene de un principio originario, sea el agua, sea cualquier otro. El hecho de buscarlo de una forma científica es lo que le hace ser considerado como el "padre de la filosofía". En geometría, y en base a los conocimientos adquiridos en Egipto, elaboró un conjunto de teoremas generales y de razonamientos deductivos a partir de estos. Todo ello fue recopilado posteriormente por Euclides en su obra Elementos, pero se debe a Tales el mérito de haber introducido en Grecia el interés por los estudios geométricos. Ninguno de sus escritos ha llegado hasta nuestros días; a pesar de ello, son muy numerosas las aportaciones que a lo largo de la historia, desde Herodoto, Jenófanes o Aristóteles, se le han atribuido. Aristóteles consideró a Tales como el primero en sugerir un único sustrato formativo de la materia; además, en su intención de explicar la naturaleza por medio de la simplificación de los fenómenos observables y la búsqueda de causas en el mismo entorno natural, Tales fue uno de los primeros en trascender el tradicional enfoque mitológico que había caracterizado la filosofía griega de siglos anteriores.


Galileo 
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgM691rDQCNqcGQ_Ro8eJcRDgUchLExAhs7fvJ5DxsUgAem_QT1hzGOwjmkmqALkVE2i3_5FQ6pNhtP36K_3rt-bPbVt3zagHVQ9C0u_KECyWUJTiCNUDt_m86g15T5qx_JAfwXIpLgAIs/s1600/GALILEO+GALILEI.jpgGalileo Galilei nació en Pisa el 15 de febrero de 1564. Lo poco que, a través de algunas cartas, se conoce de su madre, Giulia Ammannati di Pescia, no compone de ella una figura demasiado halagüeña. Su padre, Vincenzo Galilei, era florentino y procedía de una familia que tiempo atrás había sido ilustre; músico de vocación, las dificultades económicas lo habían obligado a dedicarse al comercio, profesión que lo llevó a instalarse en Pisa. Hombre de amplia cultura humanista, fue un intérprete consumado y un compositor y teórico de la música, cuyas obras sobre el tema gozaron de una cierta fama en la época. De él hubo de heredar Galileo no sólo el gusto por la música (tocaba el laúd), sino también el carácter independiente y el espíritu combativo, y hasta puede que el desprecio por la confianza ciega en la autoridad y el gusto por combinar la teoría con la práctica. Galileo fue el primogénito de siete hermanos de los que tres (Virginia, Michelangelo y Livia) hubieron de contribuir, con el tiempo, a incrementar sus problemas económicos. En 1574 la familia se trasladó a Florencia y Galileo fue enviado un tiempo al monasterio de Santa Maria di Vallombrosa, como alumno o quizá como novicio. En 1581 Galileo ingresó en la Universidad de Pisa, donde se matriculó como estudiante de medicina por voluntad de su padre. Cuatro años más tarde, sin embargo, abandonó la universidad sin haber obtenido ningún título, aunque con un buen conocimiento de Aristóteles. Entretanto, se había producido un hecho determinante en su vida: su iniciación en las matemáticas, al margen de sus estudios universitarios, y la consiguiente pérdida de interés por su carrera como médico. De vuelta en Florencia en 1585, Galileo pasó unos años dedicado al estudio de las matemáticas, aunque interesado también por la filosofía y la literatura (en la que mostraba sus preferencias por Ariosto frente a Tasso); de esa época data su primer trabajo sobre el baricentro de los cuerpos -que luego recuperaría, en 1638, como apéndice de la que habría de ser su obra científica principal- y la invención de una balanza hidrostática para la determinación de pesos específicos, dos contribuciones situadas en la línea de Arquímedes, a quien Galileo no dudaría en calificar de «sobrehumano». Tras dar algunas clases particulares de matemáticas en Florencia y en Siena, trató de obtener un empleo regular en las universidades de Bolonia, Padua y en la propia Florencia. En 1589 consiguió por fin una plaza en el Estudio de Pisa, donde su descontento por el paupérrimo sueldo percibido no pudo menos que ponerse de manifiesto en un poema satírico contra la vestimenta académica. En Pisa compuso Galileo un texto sobre el movimiento, que mantuvo inédito, en el cual, dentro aún del marco de la mecánica medieval, criticó las explicaciones aristotélicas de la caída de los cuerpos y del movimiento de los proyectiles; en continuidad con esa crítica, una cierta tradición historiográfica ha forjado la anécdota (hoy generalmente considerada como inverosímil) de Galileo refutando materialmente a Aristóteles mediante el procedimiento de lanzar distintos pesos desde lo alto del Campanile, ante las miradas contrariadas de los peripatéticos... En 1591 la muerte de su padre significó para Galileo la obligación de responsabilizarse de su familia y atender a la dote de su hermana Virginia. Comenzaron así una serie de dificultades económicas que no harían más que agravarse en los años siguientes; en 1601 hubo de proveer a la dote de su hermana Livia sin la colaboración de su hermano Michelangelo, quien había marchado a Polonia con dinero que Galileo le había prestado y que nunca le devolvió (por el contrario, se estableció más tarde en Alemania, gracias de nuevo a la ayuda de su hermano, y envió luego a vivir con él a toda su familia). La necesidad de dinero en esa época se vio aumentada por el nacimiento de los tres hijos del propio Galileo: Virginia (1600), Livia (1601) y Vincenzo (1606), habidos de su unión con Marina Gamba, que duró de 1599 a 1610 y con quien no llegó a casarse. Todo ello hizo insuficiente la pequeña mejora conseguida por Galileo en su remuneración al ser elegido, en 1592, para la cátedra de matemáticas de la Universidad de Padua por las autoridades venecianas que la regentaban. Hubo de recurrir a las clases particulares, a los anticipos e, incluso, a los préstamos. Pese a todo, la estancia de Galileo en Padua, que se prolongó hasta 1610, constituyó el período más creativo, intenso y hasta feliz de su vida. En Padua tuvo ocasión Galileo de ocuparse de cuestiones técnicas como la arquitectura militar, la castrametación, la topografía y otros temas afines de los que trató en sus clases particulares. De entonces datan también diversas invenciones, como la de una máquina para elevar agua, un termoscopio y un procedimiento mecánico de cálculo que expuso en su primera obra impresa: Le operazioni del compasso geometrico e militare, 1606. Diseñado en un principio para resolver un problema práctico de artillería, el instrumento no tardó en ser perfeccionado por Galileo, que amplió su uso en la solución de muchos otros problemas. La utilidad del dispositivo, en un momento en que no se habían introducido todavía los logaritmos, le permitió obtener algunos ingresos mediante su fabricación y comercialización. En 1602 Galileo reemprendió sus estudios sobre el movimiento, ocupándose del isocronismo del péndulo y del desplazamiento a lo largo de un plano inclinado, con el objeto de establecer cuál era la ley de caída de los graves. Fue entonces, y hasta 1609, cuando desarrolló las ideas que treinta años más tarde, constituirían el núcleo de sus Discorsi. En julio de 1609, de visita en Venecia (para solicitar un aumento de sueldo), Galileo tuvo noticia de un nuevo instrumento óptico que un holandés había presentado al príncipe Mauricio de Nassau; se trataba del anteojo, cuya importancia práctica captó Galileo inmediatamente, dedicando sus esfuerzos a mejorarlo hasta hacer de él un verdadero telescopio. Aunque declaró haber conseguido perfeccionar el aparato merced a consideraciones teóricas sobre los principios ópticos que eran su fundamento, lo más probable es que lo hiciera mediante sucesivas tentativas prácticas que, a lo sumo, se apoyaron en algunos razonamientos muy sumarios. Sea como fuere, su mérito innegable residió en que fue el primero que acertó en extraer del aparato un provecho científico decisivo. En efecto, entre diciembre de 1609 y enero de 1610 Galileo realizó con su telescopio las primeras observaciones de la Luna, interpretando lo que veía como prueba de la existencia en nuestro satélite de montañas y cráteres que demostraban su comunidad de naturaleza con la Tierra; las tesis aristotélicas tradicionales acerca de la perfección del mundo celeste, que exigían la completa esfericidad de los astros, quedaban puestas en entredicho. El descubrimiento de cuatro satélites de Júpiter contradecía, por su parte, el principio de que la Tierra tuviera que ser el centro de todos los movimientos que se produjeran en el cielo. En cuanto al hecho de que Venus presentara fases semejantes a las lunares, que Galileo observó a finales de 1610, le pareció que aportaba una confirmación empírica al sistema heliocéntrico de Copérnico, ya que éste, y no el de Tolomeo, estaba en condiciones de proporcionar una explicación para el fenómeno.

Ansioso de dar a conocer sus descubrimientos, Galileo redactó a toda prisa un breve texto que se publicó en marzo de 1610 y que no tardó en hacerle famoso en toda Europa: el Sidereus Nuncius, el 'mensajero sideral' o 'mensajero de los astros', aunque el título permite también la traducción de 'mensaje', que es el sentido que Galileo, años más tarde, dijo haber tenido en mente cuando se le criticó la arrogancia de atribuirse la condición de embajador celestial. El libro estaba dedicado al gran duque de Toscana Cósimo II de Médicis y, en su honor los satélites de Júpiter recibían allí el nombre de «planetas Medíceos». Con ello se aseguró Galileo su nombramiento como matemático y filósofo de la corte toscana y la posibilidad de regresar a Florencia, por la que venía luchando desde hacía ya varios años. El empleo incluía una cátedra honoraria en Pisa, sin obligaciones docentes, con lo que se cumplía una esperanza largamente abrigada y que le hizo preferir un monarca absoluto a una república como la veneciana, ya que, como él mismo escribió, «es imposible obtener ningún pago de una república, por espléndida y generosa que pueda ser, que no comporte alguna obligación; ya que, para conseguir algo de lo público, hay que satisfacer al público». El 1611 un jesuita alemán, Christof Scheiner, había observado las manchas solares publicando bajo seudónimo un libro acerca de las mismas. Por las mismas fechas Galileo, que ya las había observado con anterioridad, las hizo ver a diversos personajes durante su estancia en Roma, con ocasión de un viaje que se calificó de triunfal y que sirvió, entre otras cosas, para que Federico Cesi le hiciera miembro de la Accademia dei Lincei que él mismo había fundado en 1603 y que fue la primera sociedad científica de una importancia perdurable. Bajo sus auspicios se publicó en 1613 la Istoria e dimostrazione interno alle macchie solari, donde Galileo salía al paso de la interpretación de Scheiner, quien pretendía que las manchas eran un fenómeno extrasolar («estrellas» próximas al Sol, que se interponían entre éste y la Tierra). El texto desencadenó una polémica acerca de la prioridad en el descubrimiento, que se prolongó durante años e hizo del jesuita uno de los más encarnizados enemigos de Galileo, lo cual no dejó de tener consecuencias en el proceso que había de seguirle la Inquisición. Por lo demás, fue allí donde, por primera y única vez, Galileo dio a la imprenta una prueba inequívoca de su adhesión a la astronomía copernicana, que ya había comunicado en una carta a Kepler en 1597. Ante los ataques de sus adversarios académicos y las primeras muestras de que sus opiniones podían tener consecuencias conflictivas con la autoridad eclesiástica, la postura adoptada por Galileo fue la de defender (en una carta dirigida a mediados de 1615 a Cristina de Lorena) que, aun admitiendo que no podía existir contradicción ninguna entre las Sagradas Escrituras y la ciencia, era preciso establecer la absoluta independencia entre la fe católica y los hechos científicos. Ahora bien, como hizo notar el cardenal Bellarmino, no podía decirse que se dispusiera de una prueba científica concluyente en favor del movimiento de la Tierra, el cual, por otra parte, estaba en contradicción con las enseñanzas bíblicas; en consecuencia, no cabía sino entender el sistema copernicano como hipotético. En este sentido, el Santo Oficio condenó el 23 de febrero de 1616 al sistema copernicano como «falso y opuesto a las Sagradas Escrituras», y Galileo recibió la admonición de no enseñar públicamente las teorías de Copérnico. Galileo, conocedor de que no poseía la prueba que Bellarmino reclamaba, por más que sus descubrimientos astronómicos no le dejaran lugar a dudas sobre la verdad del copernicanismo, se refugió durante unos años en Florencia en el cálculo de unas tablas de los movimientos de los satélites de Júpiter, con el objeto de establecer un nuevo método para el cálculo de las longitudes en alta mar, método que trató en vano de vender al gobierno español y al holandés. En 1618 se vio envuelto en una nueva polémica con otro jesuita, Orazio Grassi, a propósito de la naturaleza de los cometas, que dio como resultado un texto, Il Saggiatore (1623), rico en reflexiones acerca de la naturaleza de la ciencia y el método científico, que contiene su famosa idea de que «el Libro de la Naturaleza está escrito en lenguaje matemático». La obra, editada por la Accademia dei Lincei, venía dedicada por ésta al nuevo papa Urbano VIII, es decir, el cardenal Maffeo Barberini, cuya elección como pontífice llenó de júbilo al mundo culto en general y, en particular, a Galileo, a quien el cardenal había ya mostrado su afecto. La nueva situación animó a Galileo a redactar la gran obra de exposición de la cosmología copernicana que ya había anunciado en 1610: el Dialogo sopra i due massimi sistemi del mondo, tolemaico e copernicano; en ella, los puntos de vista aristotélicos defendidos por Simplicio se confrontaban con los de la nueva astronomía abogados por Salviati, en forma de diálogo moderado por la bona mens de Sagredo. Aunque la obra fracasó en su intento de estar a la altura de las exigencias expresadas por Bellarmino, ya que aportaba, como prueba del movimiento de la Tierra, una explicación falsa de las mareas, la inferioridad de Simplicio ante Salviati era tan manifiesta que el Santo Oficio no dudó en abrirle un proceso a Galileo, pese a que éste había conseguido un imprimatur para publicar el libro en 1632. Iniciado el 12 de abril de 1633, el proceso terminó con la condena a prisión perpetua, pese a la renuncia de Galileo a defenderse y a su retractación formal. La pena fue suavizada al permitírsele que la cumpliera en su quinta de Arcetri, cercana al convento donde en 1616 y con el nombre de sor Maria Celeste había ingresado su hija más querida, Virginia, que falleció en 1634. En su retiro, donde a la aflicción moral se sumaron las del artritismo y la ceguera, Galileo consiguió completar la última y más importante de sus obras: los Discorsi e dimostrazioni matematiche intorno à due nueve scienze, publicado en Leiden por Luis Elzevir en 1638. En ella, partiendo de la discusión sobre la estructura y la resistencia de los materiales, Galileo sentó las bases físicas y matemáticas para un análisis del movimiento, que le permitió demostrar las leyes de caída de los graves en el vacío y elaborar una teoría completa del disparo de proyectiles. La obra estaba destinada a convertirse en la piedra angular de la ciencia de la mecánica construida por los científicos de la siguiente generación, con Newton a la cabeza. En la madrugada del 8 al 9 de enero de 1642, Galileo falleció en Arcetri confortado por dos de sus discípulos, Vincenzo Viviani y Evangelista Torricelli, a los cuales se les había permitido convivir con él los últimos años.


Gauss 
http://blogs.ua.es/fisicateleco/files/2009/11/gauss.jpg(Brunswick, actual Alemania, 1777 - Gotinga, id., 1855) Matemático, físico y astrónomo alemán. Nacido en el seno de una familia humilde, desde muy temprana edad Karl Friedrich Gauss dio muestras de una prodigiosa capacidad para las matemáticas (según la leyenda, a los tres años interrumpió a su padre cuando estaba ocupado en la contabilidad de su negocio para indicarle un error de cálculo), hasta el punto de ser recomendado al duque de Brunswick por sus profesores de la escuela primaria. El duque le proporcionó asistencia financiera en sus estudios secundarios y universitarios, que efectuó en la Universidad de Gotinga entre 1795 y 1798. Su tesis doctoral (1799) versó sobre el teorema fundamental del álgebra (que establece que toda ecuación algebraica de coeficientes complejos tiene soluciones igualmente complejas), que Gauss demostró. En 1801 Gauss publicó una obra destinada a influir de forma decisiva en la conformación de la matemática del resto del siglo, y particularmente en el ámbito de la teoría de números, las Disquisiciones aritméticas, entre cuyos numerosos hallazgos cabe destacar: la primera prueba de la ley de la reciprocidad cuadrática; una solución algebraica al problema de cómo determinar si un polígono regular de n lados puede ser construido de manera geométrica (sin resolver desde los tiempos de Euclides); un tratamiento exhaustivo de la teoría de los números congruentes; y numerosos resultados con números y funciones de variable compleja (que volvería a tratar en 1831, describiendo el modo exacto de desarrollar una teoría completa sobre los mismos a partir de sus representaciones en el plano x, y) que marcaron el punto de partida de la moderna teoría de los números algebraicos. Su fama como matemático creció considerablemente ese mismo año, cuando fue capaz de predecir con exactitud el comportamiento orbital del asteroide Ceres, avistado por primera vez pocos meses antes, para lo cual empleó el método de los mínimos cuadrados, desarrollado por él mismo en 1794 y aún hoy día la base computacional de modernas herramientas de estimación astronómica. En 1807 aceptó el puesto de profesor de astronomía en el Observatorio de Gotinga, cargo en el que permaneció toda su vida. Dos años más tarde, su primera esposa, con quien había contraído matrimonio en 1805, falleció al dar a luz a su tercer hijo; más tarde se casó en segundas nupcias y tuvo tres hijos más. En esos años Gauss maduró sus ideas sobre geometría no euclidiana, esto es, la construcción de una geometría lógicamente coherente que prescindiera del postulado de Euclides de las paralelas; aunque no publicó sus conclusiones, se adelantó en más de treinta años a los trabajos posteriores de Lobachewski y Bolyai. Alrededor de 1820, ocupado en la correcta determinación matemática de la forma y el tamaño del globo terráqueo, Gauss desarrolló numerosas herramientas para el tratamiento de los datos observacionales, entre las cuales destaca la curva de distribución de errores que lleva su nombre, conocida también con el apelativo de distribución normal y que constituye uno de los pilares de la estadística. Otros resultados asociados a su interés por la geodesia son la invención del heliotropo, y, en el campo de la matemática pura, sus ideas sobre el estudio de las características de las superficies curvas que, explicitadas en su obra Disquisitiones generales circa superficies curvas (1828), sentaron las bases de la moderna geometría diferencial. También mereció su atención el fenómeno del magnetismo, que culminó con la instalación del primer telégrafo eléctrico (1833). Íntimamente relacionados con sus investigaciones sobre dicha materia fueron los principios de la teoría matemática del potencial, que publicó en 1840. Otras áreas de la física que Gauss estudió fueron la mecánica, la acústica, la capilaridad y, muy especialmente, la óptica, disciplina sobre la que publicó el tratado Investigaciones dióptricas (1841), en las cuales demostró que un sistema de lentes cualquiera es siempre reducible a una sola lente con las características adecuadas. Fue tal vez la última aportación fundamental de Karl Friedrich Gauss, un científico cuya profundidad de análisis, amplitud de intereses y rigor de tratamiento le merecieron en vida el apelativo de «príncipe de los matemáticos».


Euclides
 http://miprimerwikiiiiiiiiiiiiiiiii.wikispaces.com/file/view/EUCLIDES.jpg/214304196/265x217/EUCLIDES.jpg(330 a.C. - 275 a.C.) Matemático griego. Junto con Arquímedes y Apolonio de Perga, posteriores a él, Euclides fue pronto incluido en la tríada de los grandes matemáticos de la Antigüedad. Sin embargo, a la luz de la inmensa influencia que su obra ejercería a lo largo de la historia, hay que considerarlo también como uno de los más ilustres de todos los tiempos. Pese a que realizó aportaciones y correcciones de relieve, Euclides ha sido visto a veces como un mero compilador del saber matemático griego. En realidad, el gran mérito de Euclides reside en su labor de sistematización: partiendo de una serie de definiciones, postulados y axiomas, estableció por rigurosa deducción lógica todo el armonioso edificio de la geometría griega. Juzgada no sin motivo como uno de los más altos productos de la razón humana y admirada como un sistema acabado y perfecto, la geometría euclidiana mantendría su vigencia durante más de veinte siglos, hasta la aparición, ya en el siglo XIX, de las llamadas geometrías no euclidianas. Poco se conoce a ciencia cierta de la biografía de Euclides, pese a ser el matemático más famoso de la Antigüedad. Es probable que se educara en Atenas, lo que permitiría explicar su buen conocimiento de la geometría elaborada en la escuela de Platón, aunque no parece que estuviera familiarizado con las obras de Aristóteles. Euclides enseñó en Alejandría, donde abrió una escuela que acabaría siendo la más importante del mundo helénico, y alcanzó un gran prestigio en el ejercicio de su magisterio durante el reinado de Ptolomeo I Sóter, fundador de la dinastía ptolemaica que gobernaría Egipto desde la muerte de Alejandro Magno hasta la ocupación romana. Se cuenta que el rey lo requirió para que le mostrara un procedimiento abreviado para acceder al conocimiento de las matemáticas, a lo que Euclides repuso que no existía una vía regia para llegar a la geometría. Este epigrama, sin embargo, se atribuye también al matemático Menecmo, como réplica a una demanda similar por parte de Alejandro Magno. La tradición ha conservado una imagen de Euclides como hombre de notable amabilidad y modestia, y ha transmitido asimismo una anécdota relativa a su enseñanza, recogida por Juan Estobeo: un joven principiante en el estudio de la geometría le preguntó qué ganaría con su aprendizaje. Euclides le explicó que la adquisición de un conocimiento es siempre valiosa en sí misma; y dado que el muchacho tenía la pretensión de obtener algún provecho de sus estudios, ordenó a un sirviente que le diera unas monedas. Euclides fue autor de diversos tratados, pero su nombre se asocia principalmente a uno de ellos, los Elementos, que rivaliza por su difusión con las obras más famosas de la literatura universal, como la Biblia o el Quijote. Se trata, en esencia, de una compilación de obras de autores anteriores (entre los que destaca Hipócrates de Quíos), a las que superó de inmediato por su plan general y la magnitud de su propósito. De los trece libros que la componen, los seis primeros corresponden a lo que se entiende todavía como geometría plana o elemental. En ellos Euclides recoge las técnicas geométricas utilizadas por los pitagóricos para resolver lo que hoy se consideran ejemplos de ecuaciones lineales y cuadráticas; se incluye también la teoría general de la proporción, atribuida tradicionalmente a Eudoxo. Los libros del séptimo al décimo tratan de cuestiones numéricas: las principales propiedades de la teoría de los números (divisibilidad, números primos), los conceptos de conmensurabilidad de segmentos a sus cuadrados y las cuestiones relacionadas con las transformaciones de los radicales dobles. Los tres restantes se ocupan de la geometría de los sólidos, hasta culminar en la construcción de los cinco poliedros regulares y sus esferas circunscritas, que habían sido ya objeto de estudio por parte de Teeteto. De las restantes obras de Euclides sólo poseemos referencias o breves resúmenes de comentaristas posteriores. Los tratados sobre los Lugares superficiales y las Cónicas ya contenían, al parecer, algunos de los resultados expuestos posteriormente por Apolonio de Perga. En los Porismas se desarrollan los teoremas geométricos denominados actualmente de tipo proyectivo; de esta obra sólo conservamos el resumen trazado por Pappo de Alejandría. En Óptica y Catóptrica se estudiaban las leyes de la perspectiva, la propagación de la luz y los fenómenos de reflexión y refracción. La influencia posterior de los Elementos de Euclides fue decisiva; tras su aparición, se adoptó de inmediato como libro de texto ejemplar en la enseñanza inicial de la matemática, con lo cual se cumplió el propósito que debió de inspirar a Euclides. Tras la caída del Imperio Romano, su obra fue preservada por los árabes y de nuevo ampliamente divulgada a partir del Renacimiento. Más allá incluso del ámbito estrictamente matemático, Euclides fue tomado como modelo, en su método y exposición, por autores como Galeno, para la medicina, o Spinoza, para la ética. Ello sin contar la multitud de filósofos y científicos de todas las épocas que, en su búsqueda de sistemas explicativos de validez universal, tuvieron en mente el admirable rigor lógico de la geometría de Euclides. De hecho, Euclides estableció lo que, a partir de su contribución, había de ser la forma clásica de una proposición matemática: un enunciado deducido lógicamente a partir de unos principios previamente aceptados. En el caso de los Elementos, los principios que se toman como punto de partida son veintitrés definiciones, cinco postulados y cinco axiomas o nociones comunes. La naturaleza y el alcance de dichos principios han sido objeto de frecuente discusión a lo largo de la historia, en especial por lo que se refiere a los postulados y, en particular, al quinto postulado, llamado de las paralelas. Según este postulado, por un punto exterior a una recta sólo puede trazarse una paralela a dicha recta. Su condición distinta respecto de los restantes postulados fue ya percibida desde la misma Antigüedad, y hubo diversas tentativas de demostrar el quinto postulado como teorema. Los esfuerzos por hallar una demostración resultaron infructuosos y prosiguieron hasta el siglo XIX, cuando algunos trabajos inéditos de Carl Friedrich Gauss (1777-1855) y las investigaciones del matemático ruso Nikolai Lobachevski (1792-1856) evidenciaron que era posible definir una geometría perfectamente consistente (la geometría hiperbólica) en la que no se cumplía el quinto postulado. Se iniciaba así el desarrollo de las geometrías no euclidianas, de entre las que destaca la geometría elíptica del matemático alemán Bernhard Riemann (1826-1866), juzgada por Albert Einstein como la que mejor representa el modelo de espacio-tiempo relativista.


Fibonacci 
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgFUZkeid34D9jzGEsFqvNROLjQf1E7kn19qTzV4vvbVS6nEIJDM-1RJu7lemWDTHiG_A6KEY0pQOMZVS94RpsWPja8A_3zKljUDIfmAsHmzlwHgbye0CZOp6VFEftpiQ-UERz4vI7r7RuQ/s1600/fibonacci+1.jpg(Leonardo Bigollo, llamado también Leonardo Fibonacci, Leonardo Pisano, Leonardo Bonacci o Fibonacci; Pisa, actual Italia, c. 1175 - id., c. 1240) Matemático italiano que difundió en Occidente los conocimientos científicos del mundo árabe, los cuales recopiló en el Liber Abaci (Libro del ábaco). Popularizó el uso de las cifras árabes y expuso los principios de la trigonometría en su obra Practica Geometriae (Práctica de la geometría). Considerado como el primer algebrista de Europa (cronológicamente hablando) y como el introductor del sistema numérico árabe, fue educado de niño en Argelia, donde su padre era funcionario de aduanas, y donde aprendió "el ábaco, al uso de los indios". Después tuvo manera, por razones de tipo comercial, de conocer todo lo que de esta ciencia se enseñaba en Egipto, en Siria, en Sicilia y en Provenza. Al material así reunido le dio un orden, una unidad de método y una claridad de enseñanza en el Liber Abaci (Libro del ábaco), que, como modelo de texto universitario, sirvió también, por su caudal de ejemplos, para la compilación de manuales de aritmética para uso de los comerciantes. Escrita en 1202 y ampliada en una segunda redacción en 1228, la obra contiene quince capítulos; en el primero se expone la numeración de las nueve cifras que Fibonacci llama "indias" y que, en efecto, son diez, porque es necesario añadirles el cero "quod arabice zephirum apellatur"; en los capítulos siguientes Leonardo expone nociones suficientes sobre el cálculo digital, tablas de adición y multiplicación, mostrando su uso para realizar las cuatro operaciones con cifras de considerable extensión, y dando a conocer los criterios de divisibilidad por dos, por tres y hasta trece, reuniendo en tablitas a propósito los resultados de las divisiones por estos números de algunos enteros no superiores al 200. En el sexto y el séptimo capítulos trata de las fracciones, del concepto y las aplicaciones del mínimo común múltiplo y de una "tabula disgregationis" que, enseñando la descomposición de buen número de fracciones ordinarias en fundamentales, revela la persistencia de la logística egipcia. La segunda parte del libro, "Regla de Álgebra", contiene las fórmulas para reconocer las ecuaciones de segundo grado, con las demostraciones según el modo antiguo, mediante construcciones geométricas, y numerosos problemas que se pueden resolver con ecuaciones o con sistemas de ecuaciones reducibles a las de segundo grado. Este libro, que debe considerarse como uno de los más importantes de aquella época por la influencia que tuvo sobre la entonces renaciente conciencia científica occidental, le procuró al autor vasta fama y llamó sobre él la atención del emperador Federico II, que le invitó a su corte. En 1220 dio a luz Práctica de la geometría, donde figuran una introducción vinculada a las proposiciones fundamentales de Euclides, reglas para la medida de longitudes, áreas y volúmenes y la división de las figuras, y las demostraciones de tales normas, con aplicaciones concretas y desarrollos de cálculo que constituyen un útil complemento de la obra anterior. Siguiendo el ejemplo de los maestros griegos, Leonardo Pisano modeló esta obra al estilo de los Elementos de Euclides, y enseñando los procedimientos a seguir cuando se quiere medir una superficie o un volumen o dividir una figura dada en partes sujetas a condiciones propuestas, acompañó siempre su enseñanza con demostraciones y cálculos debidamente desarrollados, a fin de poner de relieve que habla realizado investigaciones semejantes a las contenidas en la Métrica de Herón de Alejandría. Si bien esta obra de Fibonacci tenía un carácter exclusivamente didáctico, hay que convenir que constituye uno de los principales tratados geométricos de la Edad Media. Por otra parte se encuentra en la misma obra una parte intermedia dedicada a una teoría aritmética sobre los radicales cuadrados y cúbicos, aparte de un método para la extracción de las raíces cuadrada y cúbica de un número dado. Merece también destacarse en el libro de Fibonacci la exposición de los procedimientos ideados por Arquitas, Platón y Herón de Alejandría para duplicar el cubo, problema que junto con el de la cuadratura del círculo y la trisección del ángulo, sedujo vanamente a generaciones enteras de estudiosos. Entre otros textos de Fibonacci conocidos figura un comentario al libro de los Elementos de Euclides. Se sabe también que compuso un Libro di merchatanti. Es asimismo célebre por el descubrimiento de la denominada serie de Fibonacci, entre cuyas propiedades cabe citar su recurrencia en numerosas formaciones orgánicas naturales.
Pascal 

Einstein
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhmX1sw2fj-z8zOuiVw7QGzcK_08xj9XSNQQcA5Uz0opt9UdCrpW-Ytoke_drqREyau3KLpFKsR-oIuQrondXgRM8D98dNwPrZYygSo6N4vsBQvVMjyV-4JegRxVNBz2hDQQ4fA3oxsgJYg/+Einstein.jpgAlbert Einstein sigue siendo una figura mítica de nuestro tiempo; más, incluso, de lo que llegó a serlo en vida, si se tiene en cuenta que su imagen, en condición de póster y exhibiendo un insólito gesto de burla, se ha visto elevada a la dignidad de icono doméstico, junto a los ídolos de la canción y los astros de Hollywood. Sin embargo, no son su genio científico ni su talla humana los que mejor lo explican como mito, sino, quizás, el cúmulo de paradojas que encierra su propia biografía, acentuadas con la perspectiva histórica. Al Einstein campeón del pacifismo se le recuerda aún como al «padre de la bomba»; y todavía es corriente que se le atribuya la demostración del principio de que «todo es relativo» a él, que luchó encarnizadamente contra la posibilidad de que conocer la realidad significara jugar con ella a la gallina ciega. Albert Einstein nació en la ciudad bávara de Ulm el 14 de marzo de 1879. Fue el hijo primogénito de Hermann Einstein y de Pauline Koch, judíos ambos, cuyas familias procedían de Suabia. Al siguiente año se trasladaron a Munich, en donde el padre se estableció, junto con su hermano Jakob, como comerciante en las novedades electrotécnicas de la época. El pequeño Albert fue un niño quieto y ensimismado, que tuvo un desarrollo intelectual lento. El propio Einstein atribuyó a esa lentitud el hecho de haber sido la única persona que elaborase una teoría como la de la relatividad: «un adulto normal no se inquieta por los problemas que plantean el espacio y el tiempo, pues considera que todo lo que hay que saber al respecto lo conoce ya desde su primera infancia. Yo, por el contrario, he tenido un desarrollo tan lento que no he empezado a plantearme preguntas sobre el espacio y el tiempo hasta que he sido mayor». En 1894, las dificultades económicas hicieron que la familia (aumentada desde 1881, por el nacimiento de una hija, Maya) se trasladara a Milán; Einstein permaneció en Munich para terminar sus estudios secundarios, reuniéndose con sus padres al año siguiente. En el otoño de 1896, inició sus estudios superiores en la Eidgenossische Technische Hochschule de Zurich, en donde fue alumno del matemático Hermann Minkowski, quien posteriormente generalizó el formalismo cuatridimensional introducido por las teorías de su antiguo alumno. El 23 de junio de 1902, empezó a prestar sus servicios en la Oficina Confederal de la Propiedad Intelectual de Berna, donde trabajó hasta 1909. En 1903, contrajo matrimonio con Mileva Maric, antigua compañera de estudios en Zurich, con quien tuvo dos hijos: Hans Albert y Eduard, nacidos respectivamente en 1904 y en 1910. En 1919 se divorciaron, y Einstein se casó de nuevo con su prima Elsa. Durante 1905, publicó cinco trabajos en los Annalen der Physik: el primero de ellos le valió el grado de doctor por la Universidad de Zurich, y los cuatro restantes acabaron por imponer un cambio radical en la imagen que la ciencia ofrece del universo. De éstos, el primero proporcionaba una explicación teórica, en términos estadísticos, del movimiento browniano, y el segundo daba una interpretación del efecto fotoeléctrico basada en la hipótesis de que la luz está integrada por cuantos individuales, más tarde denominados fotones; los dos trabajos restantes sentaban las bases de la teoría restringida de la relatividad, estableciendo la equivalencia entre la energía E de una cierta cantidad de materia y su masa m, en términos de la famosa ecuación E = mc², donde c es la velocidad de la luz, que se supone constante. El esfuerzo de Einstein lo situó inmediatamente entre los más eminentes de los físicos europeos, pero el reconocimiento público del verdadero alcance de sus teorías tardó en llegar; el Premio Nobel de Física, que se le concedió en 1921 lo fue exclusivamente «por sus trabajos sobre el movimiento browniano y su interpretación del efecto fotoeléctrico». En 1909, inició su carrera de docente universitario en Zurich, pasando luego a Praga y regresando de nuevo a Zurich en 1912 para ser profesor del Politécnico, en donde había realizado sus estudios. En 1914 pasó a Berlín como miembro de la Academia de Ciencias prusiana. El estallido de la Primera Guerra Mundial le forzó a separarse de su familia, por entonces de vacaciones en Suiza y que ya no volvió a reunirse con él. Contra el sentir generalizado de la comunidad académica berlinesa, Einstein se manifestó por entonces abiertamente antibelicista, influido en sus actitudes por las doctrinas pacifistas de Romain Rolland. En el plano científico, su actividad se centró, entre 1914 y 1916, en el perfeccionamiento de la teoría general de la relatividad, basada en el postulado de que la gravedad no es una fuerza sino un campo creado por la presencia de una masa en el continuum espacio-tiempo. La confirmación de sus previsiones llegó en 1919, al fotografiarse el eclipse solar del 29 de mayo; The Times lo presentó como el nuevo Newton y su fama internacional creció, forzándole a multiplicar sus conferencias de divulgación por todo el mundo y popularizando su imagen de viajero de la tercera clase de ferrocarril, con un estuche de violín bajo el brazo. Durante la siguiente década, Einstein concentró sus esfuerzos en hallar una relación matemática entre el electromagnetismo y la atracción gravitatoria, empeñado en avanzar hacia el que, para él, debía ser el objetivo último de la física: descubrir las leyes comunes que, supuestamente, habían de regir el comportamiento de todos los objetos del universo, desde las partículas subatómicas hasta los cuerpos estelares. Tal investigación, que ocupó el resto de su vida, resultó infructuosa y acabó por acarrearle el extrañamiento respecto del resto de la comunidad científica. A partir de 1933, con el acceso de Hitler al poder, su soledad se vio agravada por la necesidad de renunciar a la ciudadanía alemana y trasladarse a Estados Unidos, en donde pasó los últimos veinticinco años de su vida en el Instituto de Estudios Superiores de Princeton, ciudad en la que murió el 18 de abril de 1955. Einstein dijo una vez que la política poseía un valor pasajero, mientras que una ecuación valía para toda la eternidad. En los últimos años de su vida, la amargura por no hallar la fórmula que revelase el secreto de la unidad del mundo hubo de acentuarse por la necesidad en que se sintió de intervenir dramáticamente en la esfera de lo político. En 1939, a instancias de los físicos Leo Szilard y Paul Wigner, y convencido de la posibilidad de que los alemanes estuvieran en condiciones de fabricar una bomba atómica, se dirigió al presidente Roosevelt instándole a emprender un programa de investigación sobre la energía atómica. Luego de las explosiones de Hiroshima y Nagasaki, se unió a los científicos que buscaban la manera de impedir el uso futuro de la bomba y propuso la formación de un gobierno mundial a partir del embrión constituido por las Naciones Unidas. Pero sus propuestas en pro de que la humanidad evitara las amenazas de destrucción individual y colectiva, formuladas en nombre de una singular amalgama de ciencia, religión y socialismo, recibieron de los políticos un rechazo comparable a las críticas respetuosas que suscitaron entre los científicos sus sucesivas versiones de la idea de un campo unificado.


Arquímedes 
http://galeon.hispavista.com/candyluna/img/arquimedes.jpg(Siracusa, actual Italia, h. 287 a.C. - id., 212 a.C.) Matemático griego. Los grandes progresos de las matemáticas y la astronomía del helenismo son deudores, en buena medida, de los avances científicos anteriores y del legado del saber oriental, pero también de las nuevas oportunidades que brindaba el mundo helenístico. En los inicios de la época helenística se sitúa Euclides, quien legó a la posteridad una prolífica obra de síntesis de los conocimientos de su tiempo que afortunadamente se conservó casi íntegra y se convirtió en un referente casi indispensable hasta la Edad Contemporánea. Pero el más célebre y prestigioso matemático fue Arquímedes. Sus escritos, de los que se han conservado una decena, son prueba elocuente del carácter polifacético de su saber científico. Hijo del astrónomo Fidias, quien probablemente le introdujo en las matemáticas, aprendió de su padre los elementos de aquella disciplina en la que estaba destinado a superar a todos los matemáticos antiguos, hasta el punto de aparecer como prodigioso, "divino", incluso para los fundadores de la ciencia moderna.

Sus estudios se perfeccionaron en aquel gran centro de la cultura helenística que era la Alejandría de los Tolomeos, en donde Arquímedes fue, hacia el año 243 a.C., discípulo del astrónomo y matemático Conón de Samos, por el que siempre tuvo respeto y admiración. Allí, después de aprender la no despreciable cultura matemática de la escuela (hacía poco que había muerto el gran Euclides), estrechó relaciones de amistad con otros grandes matemáticos, entre los cuales figuraba Eratóstenes, con el que mantuvo siempre correspondencia, incluso después de su regreso a Sicilia. A Eratóstenes dedicó Arquímedes su Método, en el que expuso su genial aplicación de la mecánica a la geometría, en la que «pesaba» imaginariamente áreas y volúmenes desconocidos para determinar su valor. Regresó luego a Siracusa, donde se dedicó de lleno al trabajo científico. Al parecer, más tarde volvió a Egipto durante algún tiempo como "ingeniero" de Tolomeo, y diseñó allí su primer gran invento, la "coclea", una especie de máquina que servía para elevar las aguas y regar de este modo regiones a las que no llegaba la inundación del Nilo. Pero su actividad madura de científico se desenvolvió por completo en Siracusa, donde gozaba del favor del tirano Hierón II. Allí alternó inventos mecánicos con estudios de mecánica teórica y de altas matemáticas, imprimiendo siempre en ellos su espíritu característico, maravillosa fusión de atrevimiento intuitivo y de rigor metódico. Sus inventos mecánicos son muchos, y más aún los que le atribuyó la leyenda (entre estos últimos debemos rechazar el de los espejos ustorios, inmensos espejos con los que habría incendiado la flota romana que sitiaba Siracusa); pero son históricas, además de la "coclea", numerosas máquinas de guerra destinadas a la defensa militar de la ciudad, así como una "esfera", grande e ingenioso planetario mecánico que, tras la toma de Siracusa, fue llevado a Roma como botín de guerra, y allí lo vieron todavía Cicerón y quizás Ovidio. La biografía de Arquímedes está más poblada de anécdotas sabrosas que de hechos como los anteriormente relatados. En torno a él tejieron la trama de una figura legendaria primero sus conciudadanos y los romanos, después los escritores antiguos y por último los árabes; ya Plutarco atribuyó una «inteligencia sobrehumana» a este gran matemático e ingeniero. La más divulgada de estas anécdotas la relata Vitruvio y se refiere al método que utilizó para comprobar si existió fraude en la confección de una corona de oro encargada por Hierón II, tirano de Siracusa y protector de Arquímedes, y quizás incluso pariente suyo. Se cuenta que el tirano, sospechando que el joyero le había engañado poniendo plata en el interior de la corona, pidió a Arquímedes que determinase los metales de que estaba compuesta sin romperla. Arquímedes meditó largo tiempo en el difícil problema, hasta que un día, hallándose en un establecimiento de baños, advirtió que el agua se desbordaba de la bañera a medida que se iba introduciendo en ella. Esta observación le inspiró la idea que le permitió resolver la cuestión que le planteó el tirano: si sumergía la corona en un recipiente lleno hasta el borde y medía el agua que se desbordaba, conocería su volumen; luego podría comparar el volumen de la corona con el volumen de un objeto de oro del mismo peso y comprobar si eran iguales. Se cuenta que, impulsado por la alegría, Arquímedes corrió desnudo por las calles de Siracusa hacia su casa gritando «Eureka! Eureka!», es decir, «¡Lo encontré! ¡Lo encontré!». La idea de Arquímedes está reflejada en una de las proposiciones iniciales de su obra Sobre los cuerpos flotantes, pionera de la hidrostática, que sería estudiada cuidadosamente por los fundadores de la ciencia moderna, entre ellos Galileo. Corresponde al famoso principio de Arquímedes (todo cuerpo sumergido en un líquido experimenta un empuje hacia arriba igual al peso del volumen de agua que desaloja), y, como allí se explica, haciendo uso de él es posible calcular la ley de una aleación, lo cual le permitió descubrir que el orfebre había cometido fraude. Según otra anécdota famosa, recogida entre otros por Plutarco, Arquímedes se hallaba tan entusiasmado por la potencia que conseguía obtener con sus máquinas, capaces de levantar grandes pesos con esfuerzo relativamente pequeño, que aseguró al tirano que, si le daban un punto de apoyo, conseguiría mover la Tierra; se cree que, exhortado por el rey a que pusiera en práctica su aseveración, logró sin esfuerzo aparente, mediante un complicado sistema de poleas, poner en movimiento un navío de tres mástiles con su carga. Análoga concentración mental y abstracción en la meditación demuestra el episodio de su muerte. Según se dice, los ingenios bélicos cuya paternidad le atribuye la tradición permitieron a Siracusa resistir tres años el asedio romano, antes de caer en manos de las tropas de Marcelo. Mientras saqueaban Siracusa los soldados de Marcelo, que al fin habían conseguido expugnar la ciudad, el viejo matemático estaba meditando, olvidado de todo, en sus problemas de geometría. Sorprendido por un soldado que le preguntó quién era, Arquímedes no le respondió, o, según otra versión, le respondió irritado que no le molestara ni le estropeara los dibujos que había trazado en la arena; y el soldado, encolerizado, lo mató. Marcelo se entristeció mucho al saberlo y mandó que le levantaran un monumento, sacando su figura del tratado Sobre la esfera y del cilindro. Cicerón reconoció por esta figura, muchos años más tarde, su tumba olvidada. Esta pasión de Arquímedes por la erudición, que le causó la muerte, fue también la que, en vida, se dice que hizo que se olvidara hasta de comer y que soliera entretenerse trazando dibujos geométricos en las cenizas del hogar o incluso, al ungirse, en los aceites que cubrían su piel. Esta imagen contrasta con la del inventor de máquinas de guerra del que hablan Polibio y Tito Livio; pero, como señala Plutarco, su interés por esa maquinaria estribó únicamente en el hecho de que planteó su diseño como mero entretenimiento intelectual. El esfuerzo de Arquímedes por convertir la estática en un cuerpo doctrinal riguroso es comparable al realizado por Euclides con el mismo propósito respecto a la geometría. Tal esfuerzo se refleja de modo especial en dos de sus libros; en el primero de ellos, Equilibrios planos, fundamentó la ley de la palanca, deduciéndola a partir de un número reducido de postulados, y determinó el centro de gravedad de paralelogramos, triángulos, trapecios y el de un segmento de parábola. En la obra Sobre la esfera y el cilindro utilizó el método denominado de exhaustión, precedente del cálculo integral, para determinar la superficie de una esfera y para establecer la relación entre una esfera y el cilindro circunscrito en ella. Este último resultado pasó por ser su teorema favorito, que por expreso deseo suyo se grabó sobre su tumba, hecho gracias al cual Cicerón pudo recuperar la figura de Arquímedes cuando ésta había sido ya olvidada.


Descartes
http://micro.magnet.fsu.edu/optics/timeline/people/antiqueimages/descartes.jpg(La Haye, Francia, 1596 - Estocolmo, Suecia, 1650) Filósofo y matemático francés. Después del esplendor de la antigua filosofía griega y del apogeo y crisis de la escolástica en la Europa medieval, los nuevos aires del Renacimiento y la revolución científica que lo acompañó darían lugar, en el siglo XVII, al nacimiento de la filosofía moderna. El primero de los ismos filosóficos de la modernidad fue el racionalismo; Descartes, su iniciador, se propuso hacer tabla rasa de la tradición y construir un nuevo edificio sobre la base de la razón y con la eficaz metodología de las matemáticas. Su «duda metódica» no cuestionó a Dios, sino todo lo contrario; sin embargo, al igual que Galileo, hubo de sufrir la persecución a causa de sus ideas. René Descartes se educó en el colegio jesuita de La Flèche (1604-1612), por entonces uno de los más prestigiosos de Europa, donde gozó de un cierto trato de favor en atención a su delicada salud. Los estudios que en tal centro llevó a cabo tuvieron una importancia decisiva en su formación intelectual; conocida la turbulenta juventud de Descartes, sin duda en La Flèche debió cimentarse la base de su cultura. Las huellas de tal educación se manifiestan objetiva y acusadamente en toda la ideología filosófica del sabio. El programa de estudios propio de aquel colegio (según diversos testimonios, entre los que figura el del mismo Descartes) era muy variado: giraba esencialmente en torno a la tradicional enseñanza de las artes liberales, a la cual se añadían nociones de teología y ejercicios prácticos útiles para la vida de los futuros gentilhombres. Aun cuando el programa propiamente dicho debía de resultar más bien ligero y orientado en sentido esencialmente práctico (no se pretendía formar sabios, sino hombres preparados para las elevadas misiones políticas a que su rango les permitía aspirar), los alumnos más activos o curiosos podían completarlos por su cuenta mediante lecturas personales. Años después, Descartes criticaría amargamente la educación recibida. Es perfectamente posible, sin embargo, que su descontento al respecto proceda no tanto de consideraciones filosóficas como de la natural reacción de un adolescente que durante tantos años estuvo sometido a una disciplina, y de la sensación de inutilidad de todo lo aprendido en relación con sus posibles ocupaciones futuras (burocracia o milicia). Tras su etapa en La Flèche, Descartes obtuvo el título de bachiller y de licenciado en derecho por la facultad de Poitiers (1616), y a los veintidós años partió hacia los Países Bajos, donde sirvió como soldado en el ejército de Mauricio de Nassau. En 1619 se enroló en las filas del duque de Baviera. Según relataría el propio Descartes en el Discurso del Método, durante el crudo invierno de ese año se halló bloqueado en una localidad del Alto Danubio, posiblemente cerca de Ulm; allí permaneció encerrado al lado de una estufa y lejos de cualquier relación social, sin más compañía que la de sus pensamientos. En tal lugar, y tras una fuerte crisis de escepticismo, se le revelaron las bases sobre las cuales edificaría su sistema filosófico: el método matemático y el principio del cogito, ergo sum. Víctima de una febril excitación, durante la noche del 10 de noviembre de 1619 tuvo tres sueños, en cuyo transcurso intuyó su método y conoció su profunda vocación de consagrar su vida a la ciencia. Tras renunciar a la vida militar, Descartes viajó por Alemania y los Países Bajos y regresó a Francia en 1622, para vender sus posesiones y asegurarse así una vida independiente; pasó una temporada en Italia (1623-1625) y se afincó luego en París, donde se relacionó con la mayoría de científicos de la época. En 1628 decidió instalarse en Holanda, país en el que las investigaciones científicas gozaban de gran consideración y, además, se veían favorecidas por una relativa libertad de pensamiento. Descartes consideró que era el lugar más favorable para cumplir los objetivos filosóficos y científicos que se había fijado, y residió allí hasta 1649. Los cinco primeros años los dedicó principalmente a elaborar su propio sistema del mundo y su concepción del hombre y del cuerpo humano. En 1633 debía de tener ya muy avanzada la redacción de un amplio texto de metafísica y física titulado Tratado sobre la luz; sin embargo, la noticia de la condena de Galileo le asustó, puesto que también Descartes sostenía en aquella obra el movimiento de la Tierra, opinión que no creía censurable desde el punto de vista teológico. Como temía que tal texto pudiera contener teorías condenables, renunció a su publicación, que tendría lugar póstumamente. En 1637 apareció su famoso Discurso del método, presentado como prólogo a tres ensayos científicos. Por la audacia y novedad de los conceptos, la genialidad de los descubrimientos y el ímpetu de las ideas, el libro bastó para dar a su autor una inmediata y merecida fama, pero también por ello mismo provocó un diluvio de polémicas, que en adelante harían fatigosa y aun peligrosa su vida. Descartes proponía en el Discurso una duda metódica, que sometiese a juicio todos los conocimientos de la época, aunque, a diferencia de los escépticos, la suya era una duda orientada a la búsqueda de principios últimos sobre los cuales cimentar sólidamente el saber. Este principio lo halló en la existencia de la propia conciencia que duda, en su famosa formulación «pienso, luego existo». Sobre la base de esta primera evidencia pudo desandar en parte el camino de su escepticismo, hallando en Dios el garante último de la verdad de las evidencias de la razón, que se manifiestan como ideas «claras y distintas». El método cartesiano, que Descartes propuso para todas las ciencias y disciplinas, consiste en descomponer los problemas complejos en partes progresivamente más sencillas hasta hallar sus elementos básicos, las ideas simples, que se presentan a la razón de un modo evidente, y proceder a partir de ellas, por síntesis, a reconstruir todo el complejo, exigiendo a cada nueva relación establecida entre ideas simples la misma evidencia de éstas. Los ensayos científicos que seguían al Discurso ofrecían un compendio de sus teorías físicas, entre las que destaca su formulación de la ley de inercia y una especificación de su método para las matemáticas. Los fundamentos de su física mecanicista, que hacía de la extensión la principal propiedad de los cuerpos materiales, fueron expuestos por Descartes en las Meditaciones metafísicas (1641), donde desarrolló su demostración de la existencia y la perfección de Dios y de la inmortalidad del alma, ya apuntada en la cuarta parte del Discurso del método. El mecanicismo radical de las teorías físicas de Descartes, sin embargo, determinó que fuesen superadas más adelante. Conforme crecía su fama y la divulgación de su filosofía, arreciaron las críticas y las amenazas de persecución religiosa por parte de algunas autoridades académicas y eclesiásticas, tanto en los Países Bajos como en Francia. Nacidas en medio de discusiones, las Meditaciones metafísicas habían de valerle diversas acusaciones promovidas por los teólogos; algo por el estilo aconteció durante la redacción y al publicar otras obras suyas, como Los principios de la filosofía (1644) y Las pasiones del alma (1649).


Euler 
http://joalsibbg.files.wordpress.com/2013/04/euler.jpg?w=190

(Basilea, Suiza, 1707 - San Petersburgo, 1783) Matemático suizo. Las facultades que desde temprana edad demostró para las matemáticas pronto le ganaron la estima del patriarca de los Bernoulli, Johann, uno de los más eminentes matemáticos de su tiempo y profesor de Euler en la Universidad de Basilea. Tras graduarse en dicha institución en 1723, cuatro años más tarde fue invitado personalmente por Catalina I para convertirse en asociado de la Academia de Ciencias de San Petersburgo, donde coincidió con otro miembro de la familia Bernoulli, Daniel, a quien en 1733 relevó en la cátedra de matemáticas. A causa de su extrema dedicación al trabajo, dos años más tarde perdió la visión del ojo derecho, hecho que no afectó ni a la calidad ni al número de sus hallazgos. Hasta 1741, año en que por invitación de Federico el Grande se trasladó a la Academia de Berlín, refinó los métodos y las formas del cálculo integral (no sólo gracias a resultados novedosos, sino también a un cambio en los habituales métodos de demostración geométricos, que sustituyó por métodos algebraicos), que convirtió en una herramienta de fácil aplicación a problemas de física. Con ello configuró en buena parte las matemáticas aplicadas de la centuria siguiente (a las que contribuiría luego con otros resultados destacados en el campo de la teoría de las ecuaciones diferenciales lineales), además de desarrollar la teoría de las funciones trigonométricas y logarítmicas (introduciendo de paso la notación e para definir la base de los logaritmos naturales). En 1748 publicó la obra Introductio in analysim infinitorum, en la que expuso el concepto de función en el marco del análisis matemático, campo en el que así mismo contribuyó de forma decisiva con resultados como el teorema sobre las funciones homogéneas y la teoría de la convergencia. En el ámbito de la geometría desarrolló conceptos básicos como los del ortocentro, el circuncentro y el baricentro de un triángulo, y revolucionó el tratamiento de las funciones trigonométricas al adoptar ratios numéricos y relacionarlos con los números complejos mediante la denominada identidad de Euler; a él se debe la moderna tendencia a representar cuestiones matemáticas y físicas en términos aritméticos. En el terreno del álgebra obtuvo así mismo resultados destacados, como el de la reducción de una ecuación cúbica a una bicuadrada y el de la determinación de la constante que lleva su nombre. A lo largo de sus innumerables obras, tratados y publicaciones introdujo gran número de nuevas técnicas y contribuyó sustancialmente a la moderna notación matemática de conceptos como función, suma de los divisores de un número y expresión del número imaginario raíz de menos uno. También se ocupó de la teoría de números, campo en el cual su mayor aportación fue la ley de la reciprocidad cuadrática, enunciada en 1783. A raíz de ciertas tensiones con su patrón Federico el Grande, regresó nuevamente a Rusia en 1766, donde al poco de llegar perdió la visión del otro ojo. A pesar de ello, su memoria privilegiada y su prodigiosa capacidad para el tratamiento computacional de los problemas le permitieron continuar su actividad científica; así, entre 1768 y 1772 escribió sus Lettres à une princesse d'Allemagne, en las que expuso concisa y claramente los principios básicos de la mecánica, la óptica, la acústica y la astrofísica de su tiempo. De sus trabajos sobre mecánica destacan, entre los dedicados a la mecánica de fluidos, la formulación de las ecuaciones que rigen su movimiento y su estudio sobre la presión de una corriente líquida, y, en relación a la mecánica celeste, el desarrollo de una solución parcial al problema de los tres cuerpos -resultado de su interés por perfeccionar la teoría del movimiento lunar-, así como la determinación precisa del centro de las órbitas elípticas planetarias, que identificó con el centro de la masa solar. Tras su muerte, se inició un ambicioso proyecto para publicar la totalidad de su obra científica, compuesta por más de ochocientos tratados, lo cual lo convierte en el matemático más prolífico de la historia.




En tiempos legendarios, Samos fue un centro griego de adoración a Hera, reina del cielo, legítima y celosa mujer de Zeus.  En aquellos tiempos, hacia el año 580 a.C, nació en Samos  el primer genio y fundador de la matemática griega, Pitágoras. Durante su época, el tirano de policrates se apodero de la isla
 Cuenta la tradición  que Pitágoras antes de escapar  enseñaba escondido en una pequeña cueva blanca en las montañas
Samos es una isla mágica. El aire está impregnado de mar, árboles y música. La playa donde el intelectual se convertía en mago, Pitágoras enseñaba sus seguidores  que la naturaleza está regida por números. Existe una armonía en la naturaleza, decía, unidad en su variedad y tiene un lenguaje: los números son el lenguaje de la naturaleza. Pitágoras encontró una relación básica entre la armonía musical y la matemática.
Pitágoras demostró un teorema general: no solo para el triángulo egipcio de proporciones 3, 4, 5, o cualquier triangulo babilónico, sino para todo triangulo que contenga un ángulo recto. Demostró que el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos.


Por ejemplo: los lado tres, cuatro y cinco forman un triángulo rectángulo porque:
3^2+4^2=5^2

No hay comentarios.:

Publicar un comentario